Skip to content

Inlining dependencies

marimo is the only Python notebook that is reproducible down to the packages, letting you inline Python dependencies in notebook files and running notebooks in isolated or "sandboxed" venvs. This lets you share standalone notebooks without shipping requirements.txt files alongside them, and guarantees your notebooks will work weeks, months, even years into the future.

To opt-in to dependency inlining, use the sandbox flag:

marimo edit --sandbox notebook.py
marimo run --sandbox notebook.py
marimo new --sandbox

When running with --sandbox, marimo:

  1. tracks the packages and versions used by your notebook, saving them in the notebook file;
  2. runs in an isolated virtual environment ("sandbox") that only contains the notebook dependencies.

marimo's sandbox provides two key benefits. (1) Notebooks that carry their own dependencies are easy to share — just send the .py file. (2) Isolating a notebook from other installed packages prevents obscure bugs.

You can also run sandboxed notebooks as scripts:

uv run notebook.py

Requires uv

Sandboxed notebooks require the uv package manager (installation instructions).

Solving the notebook reproducibility crisis

marimo's support for package sandboxing is only possible because marimo notebooks are stored as pure Python files, letting marimo take advantage of new Python standards like PEP 723 and tools like uv. In contrast, traditional notebooks like Jupyter are stored as JSON files, and which suffer from a reproducibility crisis due to the lack of package management.

Inline script metadata

When running with --sandbox, marimo automatically tracks package metadata in your notebook file using inline script metadata, which per PEP 723 is essentially a pyproject.toml inlined as the script's header. This metadata is used to manage the notebook's dependencies and Python version, and looks something like this:

# /// script
# requires-python = ">=3.11"
# dependencies = [
#     "pandas==<version>",
#     "altair==<version>",
# ]
# ///

Example notebooks

The example notebooks in our GitHub repo were all created using --sandbox. Take a look at any of them for an example of the full script metadata.

Adding and removing packages

Using the marimo editor. When you import a module in the marimo editor, if marimo detects that it is a third-party package, it will automatically be added to the script metadata. Removing an import does not remove it from the script metadata (since library code may still use the package).

Adding packages via the package manager panel will also add packages to script metadata, and removing packages from the panel will in turn remove them from the script metadata.

Adding packages manually. You can manually manage your notebook's requirements:

  • edit the script metadata manually in an editor like VS Code or neovim.
  • use uv from the command-line:
uv add --script notebook.py numpy
uv remove --script notebook.py numpy

Package locations

By default, marimo will look for packages on PyPI. You can edit the script metadata to look for packages elsewhere, such as on GitHub. Consult the Python packaging documentation for more information.

Local development with editable installs

When developing a local package, you can install it in editable mode using the [tool.uv.sources] section in the script metadata. For example:

# /// script
# requires-python = ">=3.11"
# dependencies = [
#     "my-package",
# ]
#
# [tool.uv.sources]
# my-package = { path = "../", editable = true }
# ///

This is particularly useful when you want to test changes to your package without reinstalling it. The package will be installed in "editable" mode, meaning changes to the source code will be reflected immediately in your notebook.

Specifying alternative package indexes

When you need to use packages from a custom PyPI server or alternative index, you can specify these in your script metadata using the [[tool.uv.index]] section. This is useful for private packages or when you want to use packages from a specific source.

# /// script
# requires-python = ">=3.11"
# dependencies = [
#     "pandas==<version>",
#     "private-package==<version>",
# ]
#
# [[tool.uv.index]]
# name = "custom-index"
# url = "https://custom-pypi-server.example.com/simple/"
# explicit = true
#
# [tool.uv.sources]
# private-package = { index = "custom-index" }
# ///

In this example:

  • [[tool.uv.index]] defines a custom package index
  • name is an identifier for the index
  • url points to your custom PyPI server
  • explicit = true means this index will only be used for packages explicitly associated with it
  • [tool.uv.sources] specifies which packages should come from which indexes

This approach ensures that specific packages are always fetched from your designated custom index, while other packages continue to be fetched from the default PyPI repository.

Configuration

Running marimo in a sandbox environment uses uv to create an isolated virtual environment. You can use any of uv's supported environment variables.

Choosing the Python version

For example, you can specify the Python version using the UV_PYTHON environment variable:

UV_PYTHON=3.13 marimo edit --sandbox notebook.py

Other common configuration

Another common configuration is uv's link mode:

UV_LINK_MODE="copy" marimo edit --sandbox notebook.py

Sharing on the web

You can also upload sandboxed notebooks to the web, such as on GitHub, and have others run them locally with a single command:

uvx marimo edit --sandbox https://gist.githubusercontent.com/kolibril13/a59135dd0973b97d488ba21c650667fe/raw/5f98021b5d3c024d5827fa9464787517495178b4/marimo_minimal_numpy_example.py

Note:

  1. This command will run code from a URL. Make sure you trust the source before proceeding.
  2. Upon execution, you’ll be prompted:
    Would you like to run it in a secure docker container? [Y/n]:
    
    To proceed securely, ensure you have Docker installed and running, then press Y.

Specifying dependencies in Markdown files

Sandboxing support is also provided in marimo's markdown file format under the pyproject entry of your frontmatter.

---
title: My Notebook
marimo-version: 0.0.0
pyproject: |
  requires-python: ">=3.11"
  dependencies:
    - pandas==<version>
    - altair==<version>
---
OSZAR »